Abstract

The root locus and iterative V- g method have been applied to analyze the flutter for a control surface of a launch vehicle with control actuators. The actuator is considered as a spring with dynamic stiffness. The fictitious mass method is adopted for an efficient modal flutter analysis. The methods are applied to the flutter analysis of a control wing with a pneumatic actuator at a rotating axis in the supersonic region. The effect of the sweep angle on the flutter characteristics of the wing with dynamic stiffness is investigated and is compared with that of the wings with several values of static stiffness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.