Abstract
AbstractTen sym‐penta and deca‐X substituted corannulenes (1–10; X=H, F, CH3, or CF3) define a library of fluorous compounds comprising high symmetry non‐planar aromatic compunds. They provide a group of structurally similar, yet physically distinct structures manifesting special chemical behavior related to their degree of fluorination. Owing to their bowl forms, corannulene derivatives are distinct from planar polynuclear aromatic compounds; they have relatively high dipole moments, accept 1–4 electrons, and display room temperature fluorescence as well as low temp phosphorescence. Electronic structure theory predicts the bowl inversion barrier and physical properties. The syntheses of sym‐pentafluorocorannulene by an efficient late stage fluorination affords a key derivative to calibrate predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.