Abstract
Our current research is focused on designing new corannulene derivatives that exhibit significantly improved photovoltaic characteristics. These improvements comprise reduced excitation energy, a narrower optical band gap, enhanced light absorption capabilities, a high dipole moment, and reduced reorganization energies. Theoretical calculations of these parameters could pave the way for the creation of superior molecules for use in advanced solar cell technologies. In this work, we conducted a computational study (TD-DFT/CAM-B3LYP/6–311 +G) to examine the optical and electronic characteristics of a series of short-chain materials derived from a central core-based corannulene (A, B, C, D, and E-systems). The effect of various electron-donor side groups (such as: (1) 4-di(2-thienyl) thieno[3,4][1,2,5]-thiadiazole, (2) 2,2-Methyl Cyclopenta dithiophene, (3) Cyclopenta dithiophene, (4) 3,4-ethylene dioxythiophene, and (5) 4,6-di(2-thienyl)thieno[3,4-c][1,2,5]-thiadiazole (DTTTD)) on the electronic and photovoltaic properties of corannulene derivative as an electron-acceptor (such as radiation lifetime (τ), light harvesting efficiency (LHE), and maximum open circuit voltage (Voc)) was studied computationally. Also, the electron localization function (ELF) and the localized-orbital locator (LOL) analyses are used to discover the electronic localizations and delocalizations that occur after the addition of various ligands. The electronic and photovoltaic properties of each of the designed molecular structures were compared with P3HT as a reference. The obtained results showed that each of the designed molecular structures (especially the D-structure) is very efficient in the field of photovoltaics. Therefore, it seems that the D-structure can act (as a more suitable electron-donor than P3HT) together with phenyl-C61-butyric acid methyl ester (PC61BM) (as a good electron-acceptor) and improve the efficiency of solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.