Abstract
HCV has infected >170 million individuals worldwide. Effective therapy against HCV is still lacking and there is a need to develop potent drugs against the virus. In the present study, we have employed two culture models to test the activity of fluoroquinolone drugs against HCV: a subgenomic replicon that is able to replicate independently in the cell line Huh-8 and the Huh-7 cell culture model that employs cells transfected with synthetic HCV RNA to produce the infectious HCV particles. Fluoroquinolones have also been shown to have inhibitory activity against certain viruses, possibly by targeting the viral helicase. To tease out the mechanism of the antiviral activity of fluoroquinolones, their effect on HCV NS3 helicase protein was also tested. Huh-7 cells producing the HCV virion as well as Huh-8 cells were grown in the presence or absence of 12 different fluoroquinolones. Afterwards, Huh-7 and Huh-8 cells were lysed and viral RNA was extracted. The extracted RNA was reverse transcribed and quantified by real-time quantitative PCR. Fluoroquinolones were also tested on purified NS3 protein in a molecular-beacon-based in vitro helicase assay. To varying degrees, all of the tested fluoroquinolones effectively inhibited HCV replication in both Huh-7 and Huh-8 culture models. The inhibition of HCV NS3 helicase activity was also observed with all 12 of the fluoroquinolones. Fluoroquinolones inhibit HCV replication possibly by targeting the HCV NS3 helicase. These drugs hold promise for the treatment of HCV infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.