Abstract

In this work, fluoropolymer/SiO2 composite films with switchable superoleophilicity and high oleophobicity have been successfully prepared on stainless steel mesh. Tunable wettability could be easily realized by merely reversing the feeding order of the perfluorinated monomer in the polymerization. The effects of surface roughness and chemical composition on the wettability of the films were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the distribution of low surface energy groups plays a crucial role in determining the surface oleophobicity or oleophilicity. The porous stainless steel mesh with fluoropolymer/SiO2 composite could construct dual-scale roughness, leading to less wetting of the solid. The stainless steel mesh coated with the proposed as-prepared polymer films may lead to an oil–water separation membrane. This work provides an interesting insight into the design of novel functional devices that are relevant to oil/water separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call