Abstract

A fluorometric method is described for the detection of alkaline phosphatase (ALP) activity. It is based on the use of the product of hydrolysis of the drug amifostine (a thiophosphoester) by ALP. It is known that MnO2 nanosheets quench the blue fluorescence of tungsten disulfide quantum dots (WS2 QDs) which have excitation/emission wavelengths of 320/448nm. However, in the presence of ALP and amifostine, the product of hydrolysis [2-(3-aminopropylamino)ethanethiol] triggers the decomposition of the MnO2 nanosheets. This results in the recovery of fluorescence. Based on this finding, an assay for ALP activity was developed that works in the 0.09-1.6UL-1 range, with a 40mUL-1 detection limit. The relative standard deviation is 1.87% for five repeated measurements of 0.8UL-1 ALP. The method was applied to the analysis of ALP in real samples and gave satifactory results. Graphical abstractSchematic representation of a fluorometric method for determination of the activity of alkaline phosphatase (ALP). The fluorescence of a system composed of WS2 quantum dots and MnO2 nanosheets is quenched. Hydrolysis of the cytoprotective adjuvant amifostine (a phosphothioester)by ALP leads to a thiol that causes the decomposition of the MnO2 nanosheets. As a result, the bluefluorescence of the system becomes increasingly restored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.