Abstract
A site-specific and efficient fluorolabeling of antibody variable regions with green fluorescent protein (GFP) variants and its application to an energy transfer-based homogeneous fluoroimmunoassay (open sandwich FIA) were attempted. Two chimeric proteins, Trx-V(H)-EBFP and Trx-V(L)-EGFP, consisting of V(H) and V(L) fragments of anti-hen egg lysozyme (HEL) antibody HyHEL-10 and two GFP color variants, EBFP and EGFP, respectively, were designed to be expressed in cytoplasm of trxB - mutant Escherichia coli as fusions with thioredoxin from E.coli The mixture of two proteins could be purified with HEL-affinity chromatography, retaining sufficient intrinsic fluorescence and binding activity to HEL. A significant increase in fluorescence resonance energy transfer (FRET) dependent on HEL concentration was observed, indicating the reassociation of the V(H) and V(L) domains of these chimeric proteins due to co-existing antigen. With this open sandwich FIA, an HEL concentration of 1-100 microg/ml could be non-competitively determined. The assay could be performed in a microplate format and took only a few minutes to obtain a sufficient signal after simple mixing of the chimeric proteins with samples. This represents the first demonstration that the FRET between GFP variants is applicable to homogeneous immunoassay.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have