Abstract

The synthesis, photophysical characterization, and biochemical application of sydnone-modified coumarins, a novel class of fluorogenic clickable reagents, are reported. The sydnone moiety, a stable aromatic 1,3-dipole, efficiently quenched the fluorescence of coumarin, which could be restored, with a 132-fold enhancement, upon cycloadditions with cyclooctynes, thereby expanding the fluorogenic click toolbox. TD-DFT calculations suggest that the fluorescence quenching of the sydnone-modified coumarins is likely due to the presence of an energetically low-lying nonemissive charge-separated state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.