Abstract
Mono-hydroxychlorins are uncommon macrocycles that have only been synthetically realized by modifying porphyrin rings using the harsh oxidizing agent OsO4. We show here that a more directed delivery of the mono-hydroxychlorin may be concomitantly obtained from the oxidation of porphyrinogen using the mild conditions of the high dilution Lindsey porphyrin forming reaction where water content is minimized by using dry CHCl3 within the environment of a glovebox. We now report the direct synthesis of 17,18-dihydro-18-hydroxy-5,10,15,20-tetrakis-(4-fluoro,2,6-dimethylphenyl)-porphyrin (2H-TFChl-[Formula: see text]OH) together with the corresponding freebase porphyrin TFP. The TFP has been metalated with FeBr2 and MgBr2•OEt2 resulting in metalloporphyrins Fe(III)TFP(Cl) and Mg(II)-TFP which have been structurally characterized by single-crystal X-ray crystallography. We find that the excited state properties of the mono-hydroxychlorin are similar to that of its parent TFP and Mg(II)TFP porphyrin congeners. Excited state deactivation by vibronic coupling to the high energy O-H oscillator is circumvented with the hydroxyl group remote to the 18[Formula: see text]-electron framework of the chlorin ring. These results reveal that strong H-bonding groups may be introduced on the periphery of the chlorin ring while maintaining the light-gathering properties that lie at the heart of photosynthesis of the chlorin ring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.