Abstract

Charge storage in supercapacitors is strongly related to the bond characteristics and electronic structure of electrode materials. Graphene-based materials are widely used in a supercapacitor due to the easily tunable properties and high surface/volume ratios. However, we claim that the typical covalent bond characteristics of 2D carbon materials originating from this 2pπ orbital is not very suitable to the application in supercapacitor. Here, we suggest an efficient way to improve the supercapacitor performance by tuning the covalency of bonding between the graphene-based electrode and potassium ion. We, for the first time, also introduce a simple solvent-free scale-up doping technique to prepare fluorine-doped graphene oxide (FGO) by direct plasma treatment on graphene oxide (GO) powder at ambient pressure. The FGO enabled fast electrochemical charge transfer and provided a large number of active sites for redox reactions during supercapacitor operation, and those mechanisms were thoroughly studied by various electrochemical analyses. As a result, the fabricated symmetric supercapacitor using FGO electrodes exhibited a maximum power density (~3200 W/kg) and energy density (~25.87 Wh/kg) with superior cycle stability (20000 cycles) without capacitance loss. Furthermore, the computational calculation results clarified the roles of semi-ionic C–F bonding of FGO: huge charge accumulation on the electrodes and superior electrical conductivity. Thus, our study demonstrates a facile strategy to develop promising functionalized materials, which can enhance the viability of supercapacitor for the next generation of energy storage systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.