Abstract
Due to the ability to distinguish between infected and uninfected individuals, the continuing highly contagious Coronavirus disease pandemic, which is brought on by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights the vital role that diagnostic testing plays in outbreak containment. The COVID-19 virus must be detected using timely, accurate, and economical procedures. One such method for doing this is optical sensors, particularly surface plasmon resonance (SPR), which has benefits like high sensitivity and great detection limits. The SPR sensor for the detection of viral particles of COVID-19 that we suggest in this study is based on a basic Kretschmann configuration. The performance factors for this structure were determined using MATLAB numerical analysis based on angle interrogation. Introducing Carbon nanotubes and Fluorinated graphene enhances the sensitivity of the suggested SPR sensor to 400°/RIU for one layer of fluorinated graphene and five layers of carbon nanotubes. Furthermore, utilizing COMSOL Multiphysics, the electric field improvement shown for different layers used in our suggested structure is addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.