Abstract

This study investigates the fluoride release, rechargeability and degradation behaviors of newly developed anticariogenic poly(lactic acid) (PLA) composites. The PLA composite with various concentrations (0%, 5%, 10%, 15% and 20% by weight) of glass ionomer cement (GIC) and sodium fluoride (NaF) were prepared using solvent casting method. The fluoride release, fluoride rechargeability and degradation behavior were evaluated. All experimental groups demonstrated fluoride-releasing ability. The highest level of fluoride ions released was found in PLA composite with sodium fluoride (PLA/NaF). Following the 28-day period, both groups showed a gradual reduction in fluoride ion released, ranging between 0.03 ± 0.01 and 0.53 ± 0.06 ppm, although remaining within the effective range for tooth remineralization. However, the rechargeability was only observed in PLA composite with GIC (PLA/GIC). Following an eight-week in vitro degradation test, all PLA/NaF groups displayed a significantly higher percentage of weight change and water absorption compared to the PLA/GIC and the control group. In SEM analysis, the formation of surface porosities was clearly noticed in all PLA/NaF. All specimens retained their structural integrity throughout the study. In conclusion, the newly developed PLA/GIC displays promising possibilities as an anticariogenic material. Furthermore, the rechargeability of these ions are repeatable, ensuring their long-term utility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call