Abstract
TiO2 nanotube (TNT) layers are generally prepared in fluoride-based electrolytes via electrochemical anodization that relies on the field-assisted dissolution of Ti metal forming nanoporous/nanotubular structures. However, the usage of fluoride ions is considered hazardous to the environment. Therefore, we present an environmentally friendly synthesis and application of TNT layers prepared in fluoride-free nitrate-based electrolytes. A well-defined nanotubular structure with thickness up to 1.5 μm and an inner tube diameter of ∼55 nm was obtained within 5 min using aqueous X(NO3)Y electrolytes (X = Na+, K+, Sr2+, Ag+). For the first time, we show the photocatalytic performance (using a model organic pollutant), HO˙ radical production, and thorough characterization of TNT layers prepared in such electrolytes. The highest degradation efficiency (k = 0.0113 min-1) and HO˙ radical production rate were obtained using TNT layers prepared in AgNO3 (Ag-NT). The intrinsic properties of Ag-NT such as the valence band maximum of ∼2.9 eV, surface roughness of ∼6 nm, and suitable morphological features and crystal structure were obtained. These results have the potential to pave the way for a more environmentally friendly synthesis of anodic TNT layers in the future using the next generation of fluoride-free nitrate-based electrolytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.