Abstract

AbstractIn the course of investigations on optical properties resulting from the interaction of fluorides with alumosilicate host materials and rare earth guests, a well defined BF4– ion wasfound to be incorporated within the sodalite of composition Na8Al6Si6O24(BF4)2. The resulting cubic molecular structure, which was determined by Rietveld methods (space group P4$\bar{3}$n, a = 906.91 pm, wRp = 0.045, Rp = 0.027), contains one anion in each sodalite cage and is, contrarily to expectations, thermally stable. NMR spectroscopic investigations indicated a fast rotatory motion of the BF4– tetrahedra at room temperature and agreed with the tetrahedral BF4– ions found in IR and Raman spectra. Preliminary attempts to obtain a luminescent material by incorporation of Eu3+ through aqueous ion exchange only yielded low rare earth concentrations, giving rise to characteristic red emission lines at 581 nm (5D0 → 7F1) and 615 nm (5D0 → 7F2) in a 1:2 intensity ratio. The material unexpectedly exhibited a strong broad band emission at 520 nm after calcination under Ar, which is attributed to the formation of an Eu2+ species. Further calcination under air partially reestablished the Eu3+ emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.