Abstract

Sustainable development of new technologies requires materials having advanced physical and chemical properties while maintaining reprocessability and recyclability. Vitrimers are designed for this purpose; however, their dynamic covalent chemistries often have drawbacks or are limited to specialized polymers. Here, fluoride-catalyzed siloxane exchange is reported as an exceptionally robust chemistry for scalable production of high-performance vitrimers through industrial processing of commodity polymers such as poly(methyl methacrylate), polyethylene, and polypropylene. The vitrimers show improved resistance to creep, heat, oxidation, and hydrolysis, while maintaining excellent melt flow for processing and recycling. Furthermore, the siloxane exchange between different vitrimers during mechanical blending results in self-compatibilized blends without any compatibilizers. This offers a general, scalable method for producing sustainable high-performance vitrimers and a new strategy for recycling mixed plastic wastes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.