Abstract

The zinc(II) bis-(8-hydroxyquinoline) (Znq2) has excellent photoluminescence properties, and its fluorescence emission can be significantly quenched by Fe3+ in water. To accelerate the detection response of Znq2 to Fe3+, a luminescent metal–organic framework Znq2@ZIF-8 based on guest molecular luminescence was constructed by growing zeolite imidazolate framework-8 (ZIF-8) on the outer surface of Znq2. The results show that the prepared Znq2@ZIF-8 has an octahedral core–shell structure, a particle size of approximately 1–3 μm, an enhanced specific surface area of 1105.41 m2 g−1, and with a stable green luminescence at 495 nm. A fluorescence analytical method was developed for the detection of Fe3+ in water, the correlation coefficients were significant in the Fe3+ concentration range of 0–600 μmol L−1, and the limit of detection was as low as 3.89 μmol L−1. The spiked recoveries of tap water samples demonstrated that the method could be applied to practical applications. The mechanism of fluorescence detection is that Fe3+ participates in the competitive coordination of Znq2@ZIF-8 metal centers, leading to the collapse of the crystal structure, meanwhile, Fe3+ produces a certain degree of competitive absorption of the excitation light of Znq2@ZIF-8. This method was applied for the detection of Fe3+ in water with good selectivity, anti-interference ability, and has the potential to be used as a rapid detection method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call