Abstract

Fluorescent dye dissolved in a liquid flow was used to outline liquid-gas free boundaries and, with digital imaging, to observe quantitatively surface wave propagation and pattern formation, as well as contact-line velocity and contact angle in thin film flows on horizontal and inclined substrates. Using the relatively inexpensive system described here, a fluid depth measurement with a precision of ±0.02 mm is obtained routinely in flows of several millimeters depth over an area of approximately one square meter, and essentially unlimited continuous time spans. Dynamic contact angles are measured, for the first time, on liquid fronts with significant three-dimensional curvature such as rivulets draining down an inclined plate at any speed or global location. Procedures to normalize results quantitatively for any nonuniformities of the incident illumination are given. Estimates of the contribution to the experimental error by other effects, such as variations in dye concentration and temperature, and image digital register capacity, are also discussed. Illustrative results for two fluids and several dyes are given. Refinements to decrease the local error further to ±0.005 mm or less are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.