Abstract
A series fo cross-linked fluorescent polystyrene (PS) microbeads with narrow size distribution and intense solid state emission was developed. Fluorophores based on perylene bisimide (PBI) and oligo(p-phenylenevinylene) (OPV) designed as acrylic cross-linkers were introduced into the polymerization recipe in a two-stage dispersion polymerization, carried out in ethanol in the presence of poly(vinylpyrrolidone) (PVP) as stabilizer. The structural design permitted introduction of up to 10(-5) moles of the fluorophores into the polymerization medium without fouling of the dispersion. The particle size measured using dynamic light scattering (DLS) indicated that they were nearly monodisperse with size in the range 2-3 μm depending on the amount of fluorophore incorporated. Fluorescence microscope images of ethanol dispersion of the sample exhibited intense orange red emission for PS-PBI-X series and green emission for PS-OPV-X series. A PS incorporated with both OPVX and PBIX exhibited dual emission upon exciting at the OPV wavelength of 350 nm and PBI wavelength of 490 nm, respectively. The low incorporation of fluorophore resulted in almost complete absence of aggregation induced reduction in fluorescence as well as red-shifted aggregate emission. The solid state emission quantum yield measured using integrating-sphere setup indicated a very high quantum yield of ϕpowder = 0.71 for PS-OPV-X and ϕpowder = 0.25 for PS-PBI-X series. The cross-linked PS microbeads incorporating both OPV and PBI chromophores had a ϕpowder = 0.33 for PBI emission and ϕpowder = 0.20 for OPV emission. This strategy of introducing fluorophore as cross-linkers into the PS backbone is very versatile and amenable to simultaneous addition of different suitably designed fluorophores emitting at different wavelengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.