Abstract

Molecular imprinting has advanced towards synthesizing whole-cell imprints of microorganisms such as bacteria on various sensor surfaces including wire electrodes, quartz crystal microbalances, and microparticles (MPs). We recently introduced cell-imprinted polymers (CIPs) coated on MPs, called CIP-MPs, for bacteria recovery from water. In this paper, we have advanced towards rapid fluorometric Escherichia coli (E. coli) detection by applying fluorescent magnetic CIP-MPs, which were captured by soft ferromagnetic microstructures integrated into a microfluidic channel. The shape of ferromagnetic microstructures was optimized numerically to enhance the magnetophoretic accumulation of CIP-MPs in the microchannel. The device was then fabricated and the flow rate required to enhance bacteria capturing efficiency by CIP-MPs was determined. Decreasing the flow rate reduced the flow-induced drag and increased the interactions between the bacteria and imprinted CIP cavities. Fluorescent imaging of the accumulated CIP-MPs was done before and after bacteria capturing to quantify the changes in the fluorescence intensity as E. coli cells were captured by CIP-MPs in the microchannel. The dose-response curve of the sensor at 0–109 CFU/mL bacterial counts was obtained. Using the 3- and 10-sigma methods on the dose-response curve, the limits of detection (LOD) and quantification (LOQ) of the sensor were determined to be 4 × 102 and 3 × 103 CFU/mL, respectively, within a dynamic range of 102–107 CFU/mL. Lastly, the specificity of the CIP-MPbased sensor towards E. coli was tested and confirmed using Sarcina as a non-specific target bacterium. In summary, our developed sensor offers a promising approach for rapid and low-cost detection of bacteria in water and is suitable for development of portable and durable all-polymeric sensors for point-of-need detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.