Abstract

We report a study of the allophycocyanin trimer (APC), a light-harvesting protein complex from cyanobacteria, by room-temperature single-molecule measurements of fluorescence spectra, lifetimes, intensity trajectories, and polarization modulation. Emission spectra of individual APC trimers are found to be homogeneous on the time scale of seconds. In contrast, their emission lifetimes are found to be widely distributed because of generation of long-lived exciton traps during the course of measurements. The intensity trajectories and polarization modulation experiments indicate reversible exciton trap formation within the three quasiindependent pairs of strong interacting R84 and ‚84 chromophores in APC, as well as photobleaching of individual chromophores. Comparison experiments under continuous-wave and pulsed excitation reveal a two-photon mechanism for generating exciton traps and/or photobleaching, which involves exciton-exciton annihilation. These single-molecule experiments provide new insights into the spectroscopy, exciton dynamics, and photochemistry of light-harvesting complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call