Abstract

Fluorescence spectra of sebum-rich latent fingerprints were studied with a tunable laser for non-destructive fingerprint detection without chemical treatment. The tunable laser consists of a nanosecond pulsed Nd-YAG laser and an optical parametric oscillator (OPO) crystal. The fluorescence spectra and images were measured at various excitation wavelengths in the ultraviolet region by the time-resolved fluorescence method. We have previously reported that a typical fluorescence spectrum of fingerprints consists of two peaks located at c. 330 and 440 nm. In order to determine the wavelength of optimal excitation, excitation spectra were measured at wavelengths ranging from 220 to 310 nm. The fluorescence intensity of the 330 nm peak became maximal with excitation at 280 nm. The images of latent fingerprints on white papers were also measured and the clearest image was obtained with excitation at 280 nm. The influence of continuous irradiation on the fluorescence of fingerprints was measured at the optimal excitation wavelengths. The 330 nm peak was strong at first and decreased with continuous irradiation, whereas the 440 nm peak, which was weak at first, increased gradually.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.