Abstract

Amyloid-beta proteins that form cytotoxic aggregates called amyloid-β derived diffusible ligands are responsible for various neurodegenerative diseases like Alzheimer’s and Parkinson’s disease. Novel methods for the early detection of such aggregates and inhibition of further fibrillation are highly important and need in the current situation. In this paper, we present a novel method based on fluorescence resonance energy transfer (FRET) between carbon dots and Ag nanoparticle for sensing various fibrillation stages of beta-amyloid proteins. The addition of Ag nanoparticles to carbon dot colloid is found to significantly enhance the inhibition of beta-amyloid fibrillation due to the modified hydrophobic and electrostatic interactions introduced by Ag nanoparticles and is monitored using thioflavin T (ThT) assay. Further, fluorescence quenching of carbon dots in the presence of Ag particles is found to get reduced with the increase in the incubation time of beta-amyloid fibrils. We could observe a linear trend in the variation of Stern–Volmer constants calculated based on FRET between carbon dots and Ag nanoparticles with the incubation time of beta-amyloid, indicating the potential of using the proposed FRET-based method for sensing beta-amyloid fibrillation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.