Abstract
Abstract Dark-grown leaves of maize (Zea mays), wheat (Triticum aestivum), wild-type pea (Pisum sativum) and its light-independent photomorphogenesis mutant (lip1) have different proportions of protochlorophyllide (Pchlide) forms as revealed by low-temperature fluorescence emission spectra. Four discrete spectral forms of Pchlide, with emission peaks around 633, 640, 656 and 670 nm, could be distinguished after Gaussian deconvolution. In maize and wheat the 656 nm component was the most prominent, whereas for wild-type pea and its lip1 mutant, the 633 and 640 nm components contributed mostly to the fluorescence emission spectra. For the fluorescence lifetimes measured at 77 K a double exponential model was the most adequate to describe the Pchlide fluorescence decay not only for the Pchlide650–656 form but also for the short-wavelength Pchlide forms. A fast component in the range 0.3–0.8 ns and a slow component in the range 5.1–7.1 ns were present in all samples, but the values varied, depending on specie...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.