Abstract

Fluorescence emission spectra were measured of intact cells and subcellular preparations of the green photosynthetic bacterium Prosthecochloris aestuarii in the presence and in the absence of dithionite. A 3–5-fold increase in bacteriochlorophyll a fluorescence at 816 nm occurred upon addition of dithionite in a membrane vesicle preparation (Complex I), in a photochemically active pigment-protein complex and in a bacteriochlorophyll a protein complex free from reaction centers. The pigment-protein complex showed a relatively strong long-wave emission band (835 nm) of bacteriochlorophyll a, which was preferentially excited by light absorbed at 670 nm and was not stimulated by dithionite. With Complex I, which contains some bacteriochlorophyll c in addition to bacteriochlorophyll a, a 3–4-fold stimulation of bacteriochlorophyll c emission was also observed. Emission bands at shorter wavelengths, probably due to artefacts, were quenched by dithionite. With intact cells, the effect of dithionite was smaller, and consisted mainly of an increase of bacteriochlorophyll a emission. The results indicate that the strong increase in the yield of bacteriochlorophyll emission that occurred upon generating reducing conditions is, at least mainly, due to a direct effect on the light-harvesting systems, and does not involve the reaction center as had been earlier postulated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call