Abstract

Flash-induced absorbance changes were measured in intact cells and subcellular preparations of the green photosynthetic bacterium Prosthecochloris aestuarii. In Complex I, a membrane vesicle preparation, photooxidation of the primary electron donor, P-840, and of cytochrome c-553 was observed. Flash excitation of the photosystem pigment complex caused in addition the generation of a bacteriochlorophyll a triplet. Triplet formation was the only reaction observed after flash excitation in the reaction center pigment -protein complex. The triplet had a lifetime of 90 μs at 295 K and of 165 μs at 120 K. The amount of triplet formed in a flash increased upon cooling from 295 to 120 K from 0.2 and 0.5 per reaction center to 0.45 and nearly 1 per reaction center in the photosystem pigment and reaction center pigment-protein complex, respectively. Measurements of absorbance changes in the near infrared in the reaction center pigment-protein complex indicate that the triplet is formed in the reaction center and that the reaction center bacteriochlorophyll a triplet is that of P-840. Formation of a carotenoid triplet did not occur in our preparations. Illumination with continuous light at 295 K of the reaction center pigment-protein complex produced a stable charge separation (with oxidation of P-840 and cytochrome c-553) in each reaction center, but with a low efficiency. This low efficiency, and the high yield of triplet formation is probably due to damage of the electron transport chain at the acceptor side of the reaction center of the reaction center pigment-protein complex. The halftime for cytochrome c-553 oxidation in Complex I and the photosystem pigment complex was 90 μs at 295 K; below 220 K no cytochrome oxidation occurred. At 120 K P-840 + was rereduced with a halftime of 20 ms, presumably by a back reaction with a reduced acceptor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call