Abstract
The dynamic nature of chromatin is an essential mechanism by which gene expression is regulated. Chromatin is comprised of nucleosomes, an octamer of histone proteins wrapped by DNA, and manipulation of these structures is carried out by a family of proteins known as ATP-dependent chromatin remodeling enzymes. These enzymes carry out a diverse range of activities, from appropriately positioning and adjusting the density of nucleosomes on genes, to installation and removal of histones for sequence variants, to ejection from DNA. These activities have a critical role in the proper maintenance of chromatin architecture, and dysregulation of chromatin remodeling is directly linked to the pathophysiology of various diseases. Mechanistic understanding of chromatin remodeling enzymes is therefore desirable, both as the drivers of this essential cellular activity and as potentially novel therapeutic targets in disease. In this chapter we cover our current methods for characterization of remodeler substrate binding affinity and catalytic activity, leveraging fluorescence polarization and Förster resonance energy transfer assays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.