Abstract

Varroa mites often inflict heavy losses on the global bee industry and there are few effective control options. Among these methods to control mites, pesticides are extensively used as a cheap, easy to use, and high-efficiency control measure. However, bees are sensitive to many pesticides; thus, a balance between losses induced by drugs and maximum benefits are important for beekeeping and risk assessment. In this study, the effects of flumethrin, a pyrethroid miticide used on bee colonies, was evaluated using bee larvae reared in vitro. We found that flumethrin induced significant mortality during larval metamorphosis and adult emergence. After continuous exposure during the larval stage, significant changes were observed in antioxidative enzymes (SOD and CAT), lipid peroxidation (MDA, LPO, and POD), and detoxification enzymes (GSH, GST, and GR) in the late instar larvae before pupation. It is also noteworthy that flumethrin significantly regulated the expression of immune (Basket and Dscam) and developmental (Amems, Amhex10869, Vtg and Mfe) genes in larvae, which influences can also be found in the subsequent pupae and adult stages. These findings indicate that flumethrin itself is toxic to bee larvae and has potential risks during colony development. Bees are important pollinators and the sustainable and healthy development of colonies is the foundation of pollinating success for agricultural production. This study would provide some useful thinking for pesticides application techniques and processes in risk assessment of pesticides to bee larvae, even colony.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call