Abstract

Flow-induced vibrations occur in some of the internal components of a nuclear reactor. When specific conditions are present, these vibrations may result in excessive deformations or fatigue that can generate mechanical damage. Several boiling water reactor (BWR) of nuclear power plants (NPP) have experienced failures in the jet pump assembly due to flow-induced vibration (FIV) which could be caused by acoustic pulsations derived from recirculation pumps, vibration induced by turbulence and vibration induced by leakage at the slip joint. The purpose of this paper is to establish a viable numerical methodology to evaluate the fluid-structural interaction at the slip joint of a jet pump. In this analysis, the fluid-structural interaction was evaluated with the finite element method and finite volume method with ANSYS® code in the case of two steel plates with a divergent gap. Results show that a critical velocity could cause fluidelastic instability, if only one flow in a two-way fluid-structural interaction was considered. This is one of the phenomena that could take place at the slip joint of a jet pump assembly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call