Abstract

AbstractBubbles rising through fluidized beds at velocities several times superficial velocities contribute to solids backmixing. In micro‐fluidized beds, the walls constrain bubble sizes and velocities. To evaluate gas‐phase hydrodynamics and identify diffusional contributions to longitudinal dispersion, we injected a mixture of H2, CH4, CO, and CO2 (syngas) as a bolus into a fluidized bed of porous fluid catalytic cracking catalyst while a mass‐spectrometer monitored the effluent gas concentrations at 2 Hz. The CH4, CO, and CO2 trailing RTD traces were elongated versus H2 demonstrating a chromatographic effect. An axial dispersion model accounted for 92% of the variance but including diffusional resistance between the bulk gas and catalyst pores and adsorption explained 98.6% of the variability. At 300°C, the CO2 tailing disappeared consistent with expectations in chromatography (no adsorption). H2 and He are poor gas‐phase tracers at ambient temperature. We recommend measuring RTD at operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.