Abstract
A model accounting for fluidisation by pore gas pressure in dense granular flows is presented. A viscoplastic rheology, based on the Drucker-Prager criterium, is used to describe the granular medium which is a mixture of air and glass beads. The pore gas pressure, which satisfies an advection-diffusion equation, reduces the friction between the particles and thus the value of the apparent viscosity. As a consequence, dense fluidised granular flows can travel longer distances. In laboratory experiments, the run-out distance reached by dense granular columns when collapsing is almost doubled when fluidisation is applied. This fundamental result, in the context of pyroclastic density currents, is reproduced by numerical simulations performed with the fluidised model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.