Abstract
AbstractThe focus of the present research is performance enhancement of a vertical axis Darrieus‐type wind turbine using flow control techniques. The academic and industrial interest in vertical‐axis wind turbines (VAWTs) is increasing because of its suitability to urban areas, characterized by high turbulence and low wind speeds. The paper describes experimental work performed on a GOE222 asymmetrical airfoil intended to be used in a straight‐bladed Darrieus VAWT. Airfoil characteristics were measured in a wide range of incidence angles and Reynolds numbers, relevant for the operation of a small to medium size wind turbine. A variety of passive flow control (passive porosity and surface roughness) and active flow control techniques (boundary layer suction, pulsed suction) were tested in order to evaluate their effects on the airfoil performance. The measured effects of flow control on the 2D airfoil are integrated into a modified version of a double‐multiple streamtube model in order to predict the effects on the performance and efficiency of the turbine. It was found that the improvement of 2D airfoil characteristics can be translated into improvement of total turbine performance. By the use of active flow control, it was possible to increase the VAWT maximum mechanical output. When active flow control is properly activated taking into account the azimuth and Reynolds number conditioning, the effects could be greatly increased while consuming less energy, increasing the net efficiency of the entire system. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.