Abstract

The vertical axis wind turbines (VAWTs), as common wind turbines for harvesting wind energy, have wide prospects of development. However, the VAWTs are periodically influenced by dynamic stall which can cause the aerodynamic losses and load fluctuation. Therefore, the VAWTs urgently require flow control technique to improve the aerodynamic characteristics. The jet actuators, as active flow control (AFC) techniques, are reasonable implementations for VAWTs. The current paper presents the review of jet flow control techniques which have been used or are worth being used in VAWTs, including the blowing, synthetic and plasma jet actuators. However, the jet flow control strategies to reduce the energy or matter consumption of jet actuators for VAWTs should be developed. Based on the validation of computational model, the VAWTs with upward-parabola blowing jet flow control strategy which can suppress the flow separation in advance was numerically investigated at different tip-speed ratios. The results show that the upward-parabola blowing control strategy can dramatically enhance the aerodynamic performance by using significantly low energy or matter consumption. Obviously, this novel control strategy customized for VAWT can be applied in other jet actuators, improving the aerodynamic performance of VAWT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call