Abstract

This paper presents a fluid-structure-material coupling analysis for the interaction between water waves and a very large floating laminated structure (VLFLS), which is consisted of two enhanced ultrahigh-performance concrete (UHPC) panels and a middle lightweight foamed rubber core. The representative volume element (RVE) method is used to design the mechanical properties of enhanced UHPC and foamed rubber, and the parameterized formulas are presented to reveal the dependency between macroscale mechanical properties and mesoscale hierarchical characteristics. By idealizing the rubber core as a uniformly distributed spring layer, an eighth-order differential equation of motion of the laminated structure is derived. In the context of linear potential flow theory, a hydroelastic analytical model is developed for the floating laminated structure with finite length under wave action. In the process of solving velocity potentials, a complicated dispersion equation for the wave motion below the laminated structure is derived, and this equation contains two pairs of conjugate complex roots with positive real parts. The various hydrodynamic quantities, including reflection coefficient, transmission coefficient, deflection, shear force, and bending moment, are calculated. The hydroelastic model is confirmed by considering the convergence of calculation results and the energy conservation of wave propagation. The coupled effects of wave action, material characteristics, structural parameters, and edge conditions on the hydroelastic and mechanical response of the floating laminated structure are clarified to provide important information regarding the optimal design of such structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call