Abstract

Experimental tests and computational modelling were used to explore the fluid dynamics at the trabeculae–cement interlock regions found in the tibial component of total knee replacements. A cement–bone construct of the proximal tibia was created to simulate the immediate post-operative condition. Gap distributions along nine trabeculae–cement regions ranged from 0 to 50.4 μm (mean = 12 μm). Micro-motions ranged from 0.56 to 4.7 μm with a 1 MPa compressive load to the cement. Fluid–structure analysis between the trabeculae and the cement used idealised models with parametric evaluation of loading direction, gap closing fraction (GCF), gap thickness, loading frequency and fluid viscosity. The highest fluid shear stresses (926 Pa) along the trabecular surface were found for conditions with very thin and large GCFs, much larger than reported physiological levels (∼1–5 Pa). A second fluid–structure model was created with a provision for bone resorption using a constitutive model with resorption velocity proportional to fluid shear rate. A lower cut-off was used, below which bone resorption would not occur (50 s− 1). Results showed that there was initially high shear rates (>1000 s− 1) that diminished after initial trabecular resorption. Resorption continued in high shear rate regions, resulting in a final shape with bone left deep in the cement layer, and is consistent with morphology found in post-mortem retrievals. Small gaps between the trabecular surface and the cement in the immediate post-operative state produce fluid flow conditions that appear to be supra-physiologic; these may cause fluid-induced lysis of trabeculae in the micro-interlock regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.