Abstract
The brain-computer interface (BCI) systems based on motor imagery typically rely on a large number of electrode channels to acquire information. The rational selection of electroencephalography (EEG) channel combinations is crucial for optimizing computational efficiency and enhancing practical applicability. However, evaluating all potential channel combinations individually is impractical. This study aims to explore a strategy for quickly achieving a balance between maximizing channel reduction and minimizing precision loss. To this end, we developed a spatio-temporal attention perception network named STAPNet. Based on the channel contributions adaptively generated by its subnetwork, we propose an extended step bi-directional search strategy that includes variable ratio channel selection (VRCS) and strided greedy channel selection (SGCS), designed to enhance global search capabilities and accelerate the optimization process. Experimental results show that on the High Gamma and BCI Competition IV 2a public datasets, the framework respectively achieved average maximum accuracies of 91.47% and 84.17%. Under conditions of zero precision loss, the average number of channels was reduced by a maximum of 87.5%. Additionally, to investigate the impact of neural information loss due to channel reduction on the interpretation of complex brain functions, we employed a heatmap visualization algorithm to verify the universal importance and complete symmetry of the selected optimal channel combination across multiple datasets. This is consistent with the brain’s cooperative mechanism when processing tasks involving both the left and right hands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.