Abstract

Serpentine nozzle can effectively suppress the infrared radiation signatures of the aero-engine exhaust system. However, it experiences the remarkable fluid-structure interaction (FSI) process at the work condition. In this paper, the deformation behavior of the serpentine nozzle and its flow characteristic were investigated numerically. Then, the influences of the wall thickness and the geometric configuration on the FSI effect were also explored. The results show that, the mechanism of the fluid-structure interaction is formed through the data transfer of the force and the displacement at the FSI interface. Under the FSI effect, there occur the ballon-like swellings at the second S passage, and the linear section bends upward along the Y direction. They induce the special flow features including the flow separation, the shock wave and the plume vector angle. As the value of the wall thickness increases from 3mm to 6mm, the maximum of the deformation displacement of the serpentine nozzle decreases 68.5mm. As compared to the uncoupled state, the variation of the axial thrust decreases from 2.70% to 0.70% at the coupled state. The circular-to-rectangular profile and the S-shaped passage enlarge the deformation behavior of the nozzle structure. The value of the axial thrust of the serpentine nozzle with 5mm wall thickness for the coupled state is lower 1.92% than these for the uncoupled state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.