Abstract

Fluid flow can modulate endothelial cell intracellular pH (pH(i)). Venous and arterial shear stresses of 1.4 and 14 dyn/cm2, respectively, induced intracellular acidification. The kinetics of the process and magnitude of acidification were dependent on the level of shear stress. Endothelial cells exposed to a venous shear stress were able to recover from the acidification, whereas cells exposed to an arterial shear stress remained acidic. Addition of SITS (1 mM), a HCO(3) (-)/CI(-) exchange inhibitor, greatly reduced the shear stress induced acidification, suggesting that the HCO(3) (-)/C1(-) exchanger is activated by shear stress. Shear stress may activate the exchanger by lowering the [HCO(3) (-)] at the cell surface via convective mass transfer. Altering the HCO(3) (-) gradient across the cell membrane activates the exchanger and, as a consequence, results in intracellular acidification. Perfusion with media containing ATP (10 microM) altered the kinetics of flow-induced acidification observed at both shear stress levels. ATP modulation of pH(i) may be coupled to the rise in [Ca(2+)](j) known to occur with ATP stimulation. To summarize, media perfusion induces intracellular acidification in endothelial cells, and there is evidence to suggest that pH(i) may serve as a second messenger to modulate flow associated changes in endothelial cell metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.