Abstract
There has recently been a significantly increasing interest in the passive manipulation of particles in the flow of non-Newtonian fluids through microchannels. However, an accurate and comprehensive understanding of the various fluid rheological effects on particle migration is still largely missing. We present in this work a systematic experimental study of both the individual and the combined effects of fluid inertia, elasticity, and shear thinning on the motion of rigid spherical particles in a straight rectangular microchannel. We first study the sole effect of each of these rheological properties in a Newtonian fluid, purely elastic (i.e., Boger) fluid, and purely shear-thinning (i.e., pseudoplastic) fluid, respectively. We then study the combined effects of two or all of these rheological properties in a pseudoplastic fluid and two types of elastic shear-thinning fluids, respectively. We find that the fluid elasticity effect directs particles toward the centerline of the channel while the fluid shear-thinning effect causes particle migration toward both the centerline and corners. These two effects are combined with the fluid inertial effect to understand the particle migration in inertial pseudoplastic and viscoelastic fluid flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.