Abstract

The impact of ray and vessel features on the radial air permeability and liquid penetration was compared between poplar (Populus nigra) tension and normal wood. Air permeability was measured by the falling-water volume-displacement method. To measure liquid penetration, specimens were saturated with safranin solution by the full-cell process at low pressure, and the pattern of red color penetration was then examined. Results revealed no significant difference in vessel frequency, intervessel and vessel-ray pit diameter between tension and normal wood, whereas porosity and average vessel lumen area in normal wood were significantly greater than those in tension wood. Regarding rays, their length was not different between normal and tension wood, but the latter had more frequent rays per millimeter. Since xylem rays are important flow conduits in lateral movement of fluids, it could be hypothesized that a larger number of rays in tension wood would lead to improved radial permeability. However, neither air permeability nor liquid penetration varied significantly in the studied specimens. Consequently, the results proved that ray frequency has no determining role in radial fluid flow in poplar tension and normal wood and that the share of intervessel and vessel-ray pits in radial permeability is more important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.