Abstract

Abstract The air permeability in longitudinal and radial directions of compression wood in spruce (Picea abies) and tension wood in beech (Fagus sylvatica) was compared with that of the corresponding normal wood. The primary aim of the present study was to explain why the reaction woods dry more slowly than the normal woods in the domain of free water. A number of boards conventionally dried to an average final moisture content of 12% were chosen to perform the measurements. Bordered pits on the radial walls of longitudinal tracheids in the compression and normal wood and intervessel or intervascular pits in the tension and normal wood were also examined. The reaction wood of both species is less permeable than the normal wood, both in longitudinal and radial directions. The difference in permeability was more pronounced between compression and normal wood of spruce, especially in longitudinal direction. From an anatomical point of view, this is likely related to some differences in anatomical characteristics affecting the airflow paths, such as the pit features. Such results can explain the difference in drying kinetics of the reaction and normal woods in the capillary regime of drying.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call