Abstract
ARDS is particularly characterized by pulmonary edema caused by an increase in pulmonary capillary permeability. It is considered that limiting pulmonary edema or accelerating its resorption through the modulation of fluid intake or oncotic pressure could be beneficial. This review discusses the principal clinical studies that have made it possible to progress in the optimization of the fluid state during ARDS. Notably, a randomized, multicenter study has suggested that fluid management with the goal to obtain zero fluid balance in ARDS patients without shock or renal failure significantly increases the number of days without mechanical ventilation. On the other hand, it is accepted that patients with hemodynamic failure must undergo early and adapted vascular filling. Liberal and conservative filling strategies are therefore complementary and should ideally follow each other in time in the same patient whose hemodynamic state progressively stabilizes. At present, although albumin treatment has been suggested to improve oxygenation transiently in ARDS patients, no sufficient evidence justifies its use to mitigate pulmonary edema and reduce respiratory morbidity. Finally, the resorption of alveolar edema occurs through an active mechanism, which can be pharmacologically upregluated. In this sense, the use of beta-2 agonists may be beneficial but further studies are needed to confirm preliminary promising results.
Highlights
The ventilatory treatment of acute respiratory distress syndrome (ARDS) has greatly improved in recent years
ARDS is characterized by pulmonary edema caused by an increase in pulmonary capillary permeability
Increasing Resorption of Alveolar Edema - A Complementary Objective This therapeutic aspect does not strictly imply manipulation of fluid balance in patients. It deserves to be mentioned because it clearly shows that resorption of alveolar edema does not occur by manipulation of vascular pressures, but rather by stimulation of active water transport from the alveoli toward interstitium, which would be complementary to strategies favoring the draining of interstitial edema
Summary
The ventilatory treatment of acute respiratory distress syndrome (ARDS) has greatly improved in recent years. Increasing Resorption of Alveolar Edema - A Complementary Objective This therapeutic aspect does not strictly imply manipulation of fluid balance in patients It deserves to be mentioned because it clearly shows that resorption of alveolar edema does not occur by manipulation of vascular pressures, but rather by stimulation of active water transport from the alveoli toward interstitium, which would be complementary to strategies favoring the draining of interstitial edema. A recent clinical study [45] showed that the administration of IV salbutamol at a dose of 15 μg/ kg/h for 7 d in ARDS patients made it possible to diminish the quantity of pulmonary water measured by transpulmonary thermodilution without affecting oxygenation, duration of mechanical ventilation, or outcome. It was a preliminary study that included only 40 patients
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.