Abstract

The ventilatory treatment of acute respiratory distress syndrome (ARDS) has greatly improved in recent years. During the same period, numerous non-ventilatory therapies have been evaluated — some promising, others disappointing in their physiological effects and outcome. Among them, modulation of fluid state and of plasma oncotic pressure has been the object of studies in patients. ARDS is particularly characterized by pulmonary edema owing to an increase in pulmonary capillary permeability. In the early phase of ARDS, an associated septic state is usually responsible for hypovolemia. At this stage, hemodynamic optimization by early and adapted filling has proved to have prognostic value [1] and a fluid restriction strategy can result in hemodynamic aggravation and dysfunction of associated organs, determining the mortality of patients presenting with ARDS [2]. Subsequently, hemodynamic stabilization is generally associated with a resumption of diuresis and a decrease in body weight. Passage from one phase to another is often complex and difficult to distinguish but it is probably by identifying the transition between these two phases that one can detect the moment when a strategy of optimization of fluid balance on the restrictive side is possible. After a review of the physiopathologic bases, this chapter will present the principal clinical studies that have made it possible to advance in the optimization of the fluid state during ARDS. KeywordsPulmonary EdemaAcute Lung InjuryAcute Respiratory Distress SyndromeHypertonic SalineAcute Respiratory Distress Syndrome PatientThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.