Abstract
The porphyry copper deposit (PCD) at Sungun is located in East Azarbaidjan, in the NW of Iran.The Sungun porphyries occur as stocks and dikes ranging in composition from quartz monzodiorite through quartz monzonite and granodiorite to granite. The stocks are divided into two groups (1) Porphyry Stocks I and (2) Porphyry Stock II. Porphyry Stock II, hosting the copper ore, experienced intense hydro-fracturing leading to the formation of stockwork-type and anastomozing veinlets and micro-veinlets of quartz, sulfides, carbonates, and sulfates. Three distinct types of hydrothermal alteration and sulfide mineralization are recognized at Sungun (1) hypogene, (2) contact metasomatic (skarn), and (3) supergene. Four types of hypogene alteration are developed at Sungun, potassic, propylitic, potassic–phyllic, and phyllic. Four types of inclusion are common at Sungun based upon their phase content (1) mono-phase vapor, (2) vapor-rich 2-phase, (3) liquid-rich 2-phase, and (4) multi-phase solid. Halite is the principal solid phase. The distribution pattern, shape, and phase contents of fluid inclusions in quartz veinlets at Sungun are analogous to those from Bingham and Globe-Miami in western USA. The fluid inclusion data at Sungun showed that the liquid–vapor homogenization temperature [ T H(L–V)] values for liquid-rich 2-phase, vapor-rich 2-phase, and halite-bearing inclusions vary from 160 to 580 °C, from 200 to 600 °C, and from 160 to 580 °C, respectively. The ascending unboiled fluid at the onset of the phyllic alteration episode had temperatures ∼580 °C and was moderately saline (∼15 wt%). With the gradual decrease in temperature, the salinity of this fluid gradually decreased, so that its salinity at temperatures of ∼370 and <270 °C were ∼7 and <2 wt%, respectively. Multiple boiling events occurred in Porphyry Stock II during phyllic alteration. With each boiling event the salinity of the residual fluid increased substantially. The first boiling event occurred at temperatures 540–560 °C, and increased the salinity of the residual fluid up to ∼50 wt%. At temperatures >350 °C the residual fluid remained undersaturated (with respect to NaCl) however, at temperatures <350 °C they became saturated. The minimum internal pressures calculated for the inclusions having T s (NaCl)≈ T H(L–V) showed that they were developed under the maximum hydrostatic pressure head of ∼1500 m during the boiling events.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have