Abstract
In this study, we analyze the fluid flow characteristic of rarefied gas flows in double-sided lid-driven microcavity subjected to various combinations of boundary conditions that simulate the slip at the walls using lattice Boltzmann method (LBM) constituting a single relaxation time (SRT) model. The fluid motion inside a closed square container with two rigid walls and two moving walls constitutes an exemplar for internal vortex flows. First, a complicated geometry, namely, the single-sided lid-driven microcavity is studied using the LBM-SRT model. Next, this code is extended to simulate flows in a double-sided microcavity flow. Numerical computation of fluid flow incorporating various slip boundary conditions as bounce-back and specular boundary condition (BSBC) for different values of tangential accommodation momentum coefficient (TMAC) has been investigated. Various values of Knudsen number in the slip and transition regime (Kn = 0.01, 0.05, 0.10, 0.135, and 0.15) along with different aspect ratios of 0.33, 0.50, 1.0, 2.0, and 3.0 have been considered in this study. The streamline patterns and velocity profiles were obtained for different Knudsen numbers. The formation and movement of primary vortices have been well captured with the variation of Knudsen numbers for different aspect ratios of microcavity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have