Abstract

The deposition of fouling layers on porous surfaces such as those experienced in membrane/filtration systems has been investigated using the technique of fluid dynamic gauging (FDG). In this work, dead end microfiltration was simulated using polymeric microfiltration membranes and Sphericel (hollow glass spheres) suspensions. FDG was used to track, in situ and in real time, the build-up of a Sphericel cake during the filtration process. The permeate flux through the membrane was also simultaneously monitored. Computational fluid dynamics (CFD) studies were also performed to illuminate the fluid dynamics of FDG, with particular focus on the flow patterns and on the stresses imposed on the porous surface. The governing Navier-Stokes, Darcy's and continuity equations were solved using the commercial partial differential equation solver, Fastflo™. Simulations of gauging flow with a permeable gauged surface were then conducted and comparison with filtration experiments showed excellent agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.