Abstract
We devise a methodology to fixate and image dynamic fluid domain patterns of giant unilamellar vesicles (GUVs) at sub-optical length scales. Individual GUVs are rapidly transferred to a solid support forming planar bilayer patches. These are taken to represent a fixated state of the free standing membrane, where lateral domain structures are kinetically trapped. High-resolution images of domain patterns in the liquid-ordered (lo) and liquid-disordered (ld) co-existence region in the phase-diagram of ternary lipid mixtures are revealed by atomic force microscopy (AFM) scans of the patches. Macroscopic phase separation as known from fluorescence images is found, but with superimposed fluctuations in the form of nanoscale domains of the lo and ld phases. The size of the fluctuating domains increases as the composition approaches the critical point, but with the enhanced spatial resolution, such fluctuations are detected even deep in the coexistence region. Agreement between the area-fraction of domains in GUVs and the patches respectively, supports the assumption that the thermodynamic state of the membrane remains stable. The approach is not limited to specific lipid compositions, but could potentially help uncover lateral structures in highly complex membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Biomembranes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.