Abstract

Two different direct-forcing immersed boundary methods (IBMs) were applied for the purpose of simulating slow flow through a real porous medium: the volume penalization IBM and the stress IBM. The porous medium was a random close packing of about 9000 glass beads in a round tube. The packing geometry was determined from an X-ray computed tomography (CT) scan in terms of the distribution of the truncated solid volume fraction (either 0 or 1) on a three-dimensional Cartesian grid. The scan resolution corresponded to 19.3 grid cells over the mean bead diameter. A facility was built to experimentally determine the permeability of the packing. Numerical simulations were performed for the same packing based on the CT scan data. For both IBMs the numerically determined permeability based on the Richardson extrapolation was just 10% lower than the experimentally found value. As expected, at finite grid resolution the stress IBM appeared to be the most accurate IBM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call