Abstract

Understanding of the flows through real porous media is of considerable importance given their usage in a wide range of applications. Direct numerical simulations of such flows could be vastly informational but are rarely available in literature owing to the difficulty in simulating flows around complex surface contours that generally constitute porous media. In an effort to better the understanding of such flows, an immersed boundary method (IBM) framework capable of simulating flows through arbitrary surface contours is developed. For simulation of realistic porous media, a stochastic reconstruction procedure based on simulated annealing is utilized. Detailed studies to validate the results are undertaken. Further, numerous calculations are performed on flows through two-dimensional porous channels. The obtained results are compared with the analytical results from Darcy-Forchheimer equation. A study of the effect of varying sizes of the porous structures in such flows shows the increasing deviation from Darcy-Forchheimer equation as the size becomes significant in comparison to the channel height highlighting the need for such a framework and more such DNS studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call