Abstract
The flowing-water remediation of contaminated soil was investigated. Urease combined with biochar (UCB) technology was used to handle the Pb2+-contaminated sand column. The results showed that with the continuous increase of pore volume, the concentration of Pb2+ in the leachate undergoes three stages: slow growth, rapid growth, and steady state. With increasing seepage velocity, the concentration of Pb2+ in leachate increased slightly. The residual amount of each section of the sand column gradually decreased with increasing migration distance. The comparative results indicated that the UCB technology had a good solidification effect on Pb2+. This was due to urease-induced CaCO3 precipitation, cementation, and adsorption of Pb2+. Biochar provided more nucleation sites for urease, and some Pb2+ was adsorbed on its surface or diffused into the pores of biochar, or ions exchanged with functional groups on the surface of biochar, which effectively stabilized the free Pb2+.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.