Many industrial and agricultural applications require the treatment of water streams containing high concentrations of ionic species for closing material cycles. High concentration factors are often desired, but hard to achieve with established thermal or membrane-based water treatment technologies at low energy consumptions. Capacitive deionization processes are normally assumed as relevant for the treatment of low salinity solutions only. Flow-electrode capacitive deionization (FCDI), on the other hand, is an electrically driven water desalination technology, which allows the continuous desalination and concentration of saline water streams even at elevated salinities. Ions are adsorbed electrostatically in pumpable carbon flow electrodes, which enable a range of new process designs. In this article, it is shown that continuously operated FCDI systems can be applied for the treatment of salt brines. Concentrations of up to 291.5~g/L NaCl were reached in the concentrate product stream. Based on this, FCDI is a promising technology for brine treatment and salt recovery. Additionally, a reduction of the energy demand by more than 70% is demonstrated by introducing multiple cell pairs into a continuous FCDI system. While the economic feasibility is not investigated here, the results show that FCDI systems may compete with established technologies regarding their energy demand.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call